МЕТАЛЛЫ

 

ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ

 

Свойства щелочноземельных металлов

 

Атомный
номер

Название

Атомная
масса

Электронная
конфигурация

 

r
г/см3

t°пл.
°C

t°кип.
°C

ЭО

Атомный
радиус,
нм

Степень
окисления

4

Бериллий Be

9,01

[He] 2s2

1,86

1283

2970

1,5

0,113

+2

11

Магний Mg

24,3

[Ne]3s2

1,74

649,5

1120

1,2

0,16

+2

19

Кальций Ca

40,08

[Ar] 4s2

1,54

850

1487

1,0

0,2

+2

27

Стронций Sr

87,62

[Kr] 5s2

2,67

770

1367

1,0

0,213

+2

55

Барий Ba

137,34

[Xe] 6s2

3,61

710

1637

0,9

0,25

+2

87

Радий Ra

226

[Rn] 7s2

~6

~700

1140

0,9

+2

 

Физические свойства

 

Щелочноземельные металлы (по сравнению со щелочными металлами) обладают более высокими t°пл. и t°кип., потенциалами ионизации, плотностями и твердостью.

 

Химические свойства

 

1.      Очень реакционноспособны.

2.      Обладают положительной валентностью +2.

3.      Реагируют с водой при комнатной температуре (кроме Be) с выделением водорода.

4.      Обладают большим сродством к кислороду (восстановители).

5.      С водородом образуют солеобразные гидриды ЭH2.

6.      Оксиды имеют общую формулу ЭО. Тенденция к образованию пероксидов выражена слабее, чем для щелочных металлов.

 

Нахождение в природе

 

Be

3BeO Al2O3 6SiO2 – берилл

 

Mg

MgCO3 – магнезит

CaCO3 MgCO3 – доломит

KCl MgSO4 3H2O – каинит

KCl MgCl2 6H2O – карналлит

 

Ca

CaCO3 – кальцит (известняк, мрамор и др.)

Ca3(PO4)2 – апатит, фосфорит

CaSO4 2H2Oгипс

CaSO4 ангидрит

CaF2 – плавиковый шпат (флюорит)

 

Sr

SrSO4 – целестин

SrCO3 – стронцианит

 

Ba

BaSO4 – барит

BaCO3 – витерит

 

Получение

 

Бериллий получают восстановлением фторида:

 

BeF2 + Mg  –t°®  Be + MgF2

 

Барий получают восстановлением оксида:

 

3BaO + 2Al  –t°®  3Ba + Al2O3

 

Остальные металлы получают электролизом расплавов хлоридов:

 

CaCl2 ® Ca + Cl2­

катод: Ca2+ + 2ē ® Ca0

анод: 2Cl- – 2ē ® Cl02­

 

Металлы главной подгруппы II группы - сильные восстановители; в соединениях проявляют только степень окисления +2. Активность металлов и их восстановительная способность увеличивается в ряду: ––BeMgCaSrBa®

 

1.      Реакция с водой.

В обычных условиях поверхность Be и Mg покрыты инертной оксидной пленкой, поэтому они устойчивы по отношению к воде. В отличие от них Ca, Sr и Ba растворяются в воде с образованием гидроксидов, которые являтся сильными основаниями:

 

Mg + 2H2O  –t°®  Mg(OH)2 + H2­

Ca + 2H2O ® Ca(OH)2 + H2­

 

2.      Реакция с кислородом.

Все металлы образуют оксиды RO, барий-пероксид – BaO2:

 

2Mg + O2 ® 2MgO

Ba + O2 ® BaO2

 

3.      С другими неметаллами образуются бинарные соединения:

 

Be + Cl2 ® BeCl2(галогениды)

Ba + S ® BaS(сульфиды)

3Mg + N2 ® Mg3N2(нитриды)

Ca + H2 ® CaH2(гидриды)

Ca + 2C ® CaC2(карбиды)

3Ba + 2P ® Ba3P2(фосфиды)

 

Бериллий и магний сравнительно медленно реагируют с неметаллами.

 

4.      Все металлы растворяются в кислотах:

 

Ca + 2HCl ® CaCl2 + H2­

Mg + H2SO4(разб.) ® MgSO4 + H2­

 

Бериллий также растворяется в водных растворах щелочей:

 

Be + 2NaOH + 2H2O ® Na2[Be(OH)4] + H2­

 

5.      Качественная реакция на катионы щелочноземельных металлов – окрашивание пламени в следующие цвета:

 

Ca2+ - темно-оранжевый

Sr2+- темно-красный

Ba2+ - светло-зеленый

 

Катион Ba2+ обычно открывают обменной реакцией с серной кислотой или ее солями:

Сульфат бария – белый осадок, нерастворимый в минеральных кислотах.

 

Оксиды щелочноземельных металлов

 

Получение

 

1)     Окисление металлов (кроме Ba, который образует пероксид)

2)     Термическое разложение нитратов или карбонатов

 

CaCO3  –t°®  CaO + CO2­

2Mg(NO3)2  –t°®  2MgO + 4NO2­ + O2­

 

Химические свойства

 

Типичные основные оксиды. Реагируют с водой (кроме BeO), кислотными оксидами и кислотами

 

MgO + H2O ® Mg(OH)2

3CaO + P2O5 ® Ca3(PO4)2

BeO + 2HNO3 ® Be(NO3)2 + H2O

 

BeO - амфотерный оксид, растворяется в щелочах:

 

BeO + 2NaOH + H2O ® Na2[Be(OH)4]

 

Гидроксиды щелочноземельных металлов R(OH)2

 

Получение


Реакции щелочноземельных металлов или их оксидов с водой:

Ba + 2H2O ® Ba(OH)2 + H2­

CaO(негашеная известь) + H2O ® Ca(OH)2(гашеная известь)

 

Химические свойства

 

Гидроксиды R(OH)2 - белые кристаллические вещества, в воде растворимы хуже, чем гидроксиды щелочных металлов (растворимость гидроксидов уменьшается с уменьшением порядкового номера; Be(OH)2 – нерастворим в воде, растворяется в щелочах). Основность R(OH)2 увеличивается с увеличением атомного номера:

 

Be(OH)2амфотерный гидроксид

Mg(OH)2слабое основание

 

остальные гидроксиды - сильные основания (щелочи).

 

1)     Реакции с кислотными оксидами:

 

Ca(OH)2 + SO2 ® CaSO3¯ + H2O

Ba(OH)2 + CO2 ® BaCO3¯ + H2O

 

2)     Реакции с кислотами:

 

Mg(OH)2 + 2CH3COOH ® (CH3COO)2Mg + 2H2O

Ba(OH)2 + 2HNO3 ® Ba(NO3)2 + 2H2O

 

3)     Реакции обмена с солями:

 

Ba(OH)2 + K2SO4 ® BaSO4¯+ 2KOH

 

4)     Реакция гидроксида бериллия со щелочами:

 

Be(OH)2 + 2NaOH ® Na2[Be(OH)4]

 

Жесткость воды

 

Природная вода, содержащая ионы Ca2+ и Mg2+, называется жесткой. Жесткая вода при кипячении образует накипь, в ней не развариваются пищевые продукты; моющие средства не дают пены.

Карбонатная (временная) жесткость обусловлена присутствием в воде гидрокарбонатов кальция и магния, некарбонатная  (постоянная)  жесткость – хлоридов и сульфатов.

Общая жесткость воды рассматривается как сумма карбонатной и некарбонатной.

Удаление жесткости воды осуществляется путем осаждения из раствора ионов Ca2+ и Mg2+:

 

1)     кипячением:

Сa(HCO3)2  –t°®  CaCO3¯ + CO2­ + H2O

Mg(HCO3)2  –t°®  MgCO3¯ + CO2­ + H2O

 

2)     добавлением известкового молока:

 

Ca(HCO3)2 + Ca(OH)2 ® 2CaCO3¯ + 2H2O

 

3)     добавлением соды:

 

Ca(HCO3)2 + Na2CO3 ® CaCO3¯+ 2NaHCO3

CaSO4 + Na2CO3 ® CaCO3¯ + Na2SO4

MgCl2 + Na2CO3 ® MgCO3¯ + 2NaCl

 

4)     пропусканием через ионнообменную смолу

 

а) катионный обмен:

2RH + Ca2+ ® R2Ca + 2H+

б) анионный обмен:

2ROH + SO42- ® R2SO4 + 2OH-

(где R - сложный органический радикал)

 

Для удаления временной жесткости используют все четыре способа, а для

постоянной - только два последних.

 

 

НАЗАД

МЕНЮ

ВПЕРЕД